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Abstract— An increasing number of wearable and mobile
devices are capable of automatically sensing and recording rich
information about the surrounding environment. To make use
of such data, it is desirable for each data point to be matched
with its corresponding spatial location. We focus on using the
trajectory from a device’s odometry sensors that reveal changes
in motion over time. Our goal is to recover the route traversed,
which we will define as a sequence of revisitable positions. Dead
reckoning, which computes the device’s route from its odometry
trajectory, is known to suffer from significant drift over time.
We aim to overcome drift errors by reshaping the odometry
trajectory to fit the constraints of a given topological map and
sensor noise model. Prior works use iterative search algorithms
that are susceptible to local maximas [15], which means that
they can be misled when faced with ambiguous decisions. In
contrast, our algorithm is able to find the set of all routes within
the given constraints. This also reveals if there are multiple
routes that are similarly likely. We can then rank them and
select the optimal route that is most likely to be the actual
route. We also show that the algorithm can be extended to
recover routes even in the presence of topological map errors.
We evaluate our algorithm by recovering all routes traversed by
a wheeled robot covering over 9 kilometers from its odometry
sensor data.

I. INTRODUCTION

The rapid proliferation of mobile and wearable devices
presents incredible opportunities to capture data about envi-
ronments where static devices previously could not. A lone
static device equipped using sensors including temperature,
Wifi, or UV can only capture a single data point at a
particular location. It would require a distributed array of
static sensors to reveal any spatial patterns of an environment.
In contrast, a mobile device has the flexibility to capture such
data and help create such spatial maps if the corresponding
location for each sensor measurement is known. In addition,
the growing popularity of consumer wearable devices for
activity tracking could potentially benefit from route identi-
fication.

Many existing algorithms can recover the route traversed
with incredible accuracy using powerful sensors including
GPS, Kinect, and LIDAR. Unfortunately, only a small subset
of mobile devices are equipped with such sensors. GPS
performs well in outdoor environments but is insufficient
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for the indoor environments that our work addresses. Ap-
proaches using exteroceptive sensors including Kinect and
LIDAR are wildly successful but require unwieldy form
factors and usage limitations that not all devices are intended
for. Wifi and Bluetooth signal strengths can also be used to
localize mobile devices but require non-negligible overheads
of creating detailed fingerprint maps due to the difficult to
predict effects of the environment on the propagation of
signal strengths.

Unlike many of these other sensors, odometry cannot
uniquely distinguish a particular location from a single
measurement alone; however, it does capture high resolution
motion data while having low cost, small form factor, and
low power consumption. The process of dead reckoning
computes the device’s route by recursively updating device’s
current position from its prior position and the current motion
update unfortunately suffers significantly from cumulative
drift errors.

Although the route computed using dead reckoning is
poor, we recognize that odometry captures the overall shape
of the route traversed by the device well. We aim to overcome
drift errors by reducing the high resolution motion data into
simple, large motions so that it becomes feasible to perform
a brute force search for reshaping the trajectory to fit the
known topological map and sensor noise model.

Our search algorithm finds the set of all feasible candidate
routes from the given motion trajectory. We then rank the set
of routes and select the candidate with the best opportunity
of recovering the actual route. We can also inspect the
candidates to see if there are ambiguous situations in which
there are several good candidate routes. Our algorithm is
also flexible enough to address scenarios where there may
be errors in the topological maps. We demonstrate that our
algorithm successfully recovers all routes traversed by a
robot covering over 9 kilometres.

II. RELATED WORK

Prior work with pure dead reckoning all eventually result
in significant errors over time. Careful calibration may work
for short distances but will eventually require corrections
[3], [4]. Particle filters have been used to correct drift errors
by using walls of a known map to constrain particles to a
given free space with odometry motion data [2], [5], [11],
[14], [17]. As motion data cannot uniquely disambiguate
the device’s location, the high resolution motion updates
result in large search spaces that tend to suffer in open
areas. Sensors including Kinect and LIDAR are much more
effective with particle filters as they can take advantage of



distinctive features captured from the surrounding environ-
ment to sufficiently constrain the device’s possible locations.

Other works use a variety of signal sources like GPS, Wifi
and Bluetooth to localize a device but these signals propagate
nearly unpredictably indoors because of the complicated
effects of the surrounding environment. As a result, Wifi
and Bluetooth approaches for localization typically rely on
known fingerprint maps of unique signal signatures, which
require non-negligible overheads to create [1] [10] [7].

Topological maps are an essential piece of our algorithm
so that we can focus on utilizing the shape of the overall
trajectory. It has been used for both topological localization
with visual features [12] for robots as well as GPS map
matching algorithms [3], [6], [8], [9], [16]. The major dif-
ference is that visual features and GPS positions both capture
unique signatures in an environment while our algorithm
operates only on featureless, relative motion data.

We use a relative cost metric that has been shown to best
take advantage of relative motion [15]. Unlike prior work, we
do not use a greedy search that succumbs to local maximas.
In contrast, we perform an exhaustive search that reveals the
set of all reasonable routes. This allows our algorithm to be
able to rank the routes and then select the optimal route. Our
approach also reveals if there are multiple alternative routes
to consider.

III. DEFINITIONS

We will first define the three inputs required by our
algorithm: the topological map, segmented trajectory, and
sensor noise model. We also briefly define dead reckoning.

A. Topological Map

Maps often use wall constraints to limit the free space
of traversable areas. In contrast, a topological map is less
concerned about the exact point the device may be at and
more about transitions between various distinct areas of the
environment. Although less accurate, such a representation
has not hindered the success of GPS navigation algorithms.

A topological map is a graph with nodes and edges. If we
consider an indoor office-like environment, then a node is
an intersection and an edge is a hallway, where edges allow
transitions between pairs of nodes. Such a representation
assumes that the device commits to following a particular
topological edge until an intersection point is reached. We
will define a node as an intersection point (x, y) in global
map coordinates. An edge is a transition between two nodes
((x1, y1), (x2, y2)).

Figure 1 shows the difference between the walls and the
topological map. One such edge is highlighted and represents
a bridge connecting the two buildings. We will later remove
this bridge to see if our algorithm can still recover the route
traversed.

B. Segmented Trajectory

An odometry update u is the change in forward motion
dm and rotation dr since the previous update. The trajectory
t is then a sequence of motion updates (u1, u2, ...) ordered

Fig. 1. The difference between wall constraints (light) and topological
constraints (dark). One such topological edge (dashed) is emphasized as an
example of two intersection points connected by an hallway.

Fig. 2. Raw odometry sensor data showing the total forward distance
traveled and heading changes over the route shown in Figure 3

by time. Odometry updates typically occur very frequently
(20 Hz for our robot) and capture very small changes in
motion as shown in Figure 2.

u = (dm, dr)

t = u1, u2, ...

With such high resolution motion data, each update is
insignificant on its own. As a result, it would be com-
putationally infeasible to consider modifying each motion
update. Instead, we segment the trajectory into a much
smaller set of significant changes in motion U . This assumes
that the device’s motion can be characterized as a single,
significant motion forward dM followed by a rotation dR.
This is reasonable in office-like indoor environments where
forward motions occurs while traversing a hallway followed
by rotations to transition at an intersection. Figure 3 shows



Fig. 3. Transforming the raw trajectory into simpler trajectory segments
reduces drift (left). Goal is to recover the true route from the trajectory
segments (right).

the segmentation of a trajectory, which appears to already
significantly reduce drift. The result is a much shorter
segmented trajectory T that will be computationally feasible
for our algorithm to recover route candidates.

U = (dM, dR)

T = (U1, U2, ...)

C. Sensor Noise Model

If the ground truth route in the topological map is known,
then we can compute the expected sequence of trajectory
motion segments T expect. The expected trajectory segments
can then be directly compared to the measured trajectory
segments T actual.

As shown in Figure 3, although the routes look similar, the
naive approach comparing their similarity using the distance
between corresponding positions would not work because
of drift. Our approach will separately compare the changes
in motion for each corresponding intersection. This will
effectively ignore drift errors from prior motion updates.

Following the relative cost metric of prior work [15], we
will define the error of a single pair of motion updates to be
(εMi, εRi), which is the percentage difference of distance
traveled εMi and the difference in rotation εRi.

εMi =
dMexpect

i − dMactual
i

dMexpect
i

εRi = Rexpect
i −Ractual

i

We define the error over the entire route
(ηMroute, ηRroute) to be maximum over the entire
sequence of motion segments. As a result, the noise
required to reshape a trajectory is related to the worst
behaving snap and not the total sum of noise errors. This
will ensure that we can compare errors across routes of
different lengths.

The noise model provided to our algorithm will also be
the pair (ηMmodel, ηRmodel). Our algorithm searches for all
routes that fit within the noise model. As a result, the noise
model must account for deviations from both odometry errors
and the maximum deviation from the topological map. Its
values must bound the worst case snapping errors.

ηM = max(εM1, εM2, ...)

ηR = max(εR1, εR2, ...)

D. Dead Reckoning

We will define a device’s pose to be a particular position
(x, y) and heading h in the coordinates of the topological
map (x, y, h). Given an initial pose, dead reckoning will
recursively update its pose from the arriving motion updates.
Dead reckoning computes its current pose xi, yi, hi using
its prior pose xi−1, yi−1, hi−1 and current motion update
dmi, dri. It computes the global displacement from the
motion update and then adds it to the prior pose.

xi = xi−1 + sin(hi−1 + dri) ∗ dmi

yi = yi−1 + cos(hi−1 + dri) ∗ dmi

hi = hi−1 + dri

The recursive computations reveals why errors at any step
can accumulate very rapidly, resulting in significant drift
errors.

IV. SNAPPING ALGORITHM

The snapping algorithm assumes that we are given the
topological map, sensor noise model, and segmented motion
trajectory. The algorithm will find all modifications of the
segmented motion trajectory that snap to the topological map
within the given sensor noise model. Our search can tolerate
a more permissive noise model in exchange for additional
computation.



A. Recovering Feasible Routes

The snapping algorithm finds all routes in the topological
map, where the modifications required to snap all odometry
trajectory segments do not violate the given sensor noise
model. This can be accomplished by creating a search tree
to explore all possible routes of the topological map. Each
level in the tree corresponds to the corresponding index
of the motion update in the trajectory segment. Although
it is effectively a brute force search, the maximum depth
of the search tree is bounded by the number of trajectory
segment updates, which is significantly less than the number
of motion updates captured. We can further prune search
paths when a node cannot snap the motion update within
the bounds of the noise sensor model. We also limit the
search breadth of a node by limiting its children to be direct
neighbors in the topological map. We have found that the
search space is sufficiently small enough to be feasible in
practice.

These are the rules for the search tree:
1) A node’s value is the device’s current pose (x, y, h).
2) A node’s pose position (x, y) should correspond to an

intersection in the topological map.
3) A parent node at level i can only have child nodes at

level i+ 1.
4) The position of a parent node (xp, yp) and child node

(xc, yc) must have a connecting edge in the topological
map.

5) A parent at level i with pose (xp, yp, hp) can have
a child node with pose (xc, yc, hc) if applying the
motion update dMi, dRi results in a snapping error
εMi, εRi within the bounds of the given noise model
(ηMmodel, ηRmodel)

Our current algorithm uses depth first search but other
searches would also work because of the finite search space.
The algorithm begins by creating a set of root nodes at
level 0 initialized to one of the intersection points in the
topological map. For each node, we then recursively compute
the reachable intersections in the topological map from the
node’s current pose. A child node is created if the error in
the expected and actual motion updates are within the sensor
noise model (ηMmodel, ηRmodel). If the search reaches a
depth where there are no more motion updates, then all
trajectory segments have been successfully snapped. Once
the search completes, we have a set of successfully snapped
routes from which we can select the optimal.

Too restrictive of a noise model may not successfully re-
cover the actual route. A more permissive sensor noise model
will naturally increase the size of the search space; however,
it does not reduce the quality of the routes discovered. In
fact, it may discover many alternate routes, which is not
necessarily undesirable because we know about the error
bounds (ηM, ηR) for each route. If there is one route that
has a snapping error significantly lower than all others, then
it is very likely that it is the actual route. In contrast, if
several routes have similar errors, then the best route is now
more ambiguous.

B. Topological Map Errors

The algorithm presented above depends on having a cor-
rect topological map. In our work, we found that intersections
were much easier to mark than the hallways. As a result,
we automatically created hallway connections between all
intersections that do not intercept any of the wall constraints.
Unfortunately, this approach may miss out on connections in
topologies like ours that do not always have clear line of sight
between intersections.

One approach to addressing such errors is to eliminate the
constraint that a parent and its child can only have positions
connected by an edge in the topological map. This would be
undesirable because it would effectively ignore all edges in
the topological map and result in an enormous search space.
Instead, we set a user specified limit on the number of time
in a route that a child that does not share a direct connection
to its parent in the topological map. This simple extension
allows our algorithm to be flexible enough to address a
few missing connections while still taking advantage of
connectivity in the topological map to find only the most
likely routes and also remaining computationally feasible.

V. EVALUATION

In our evaluation, we record odometry and localization
data from an autonomous, omni-directional wheeled robot
[13] equipped with odometry, LIDAR, and Kinect sensors.
The robot is directed to visit a sequence of waypoints
throughout the environment. Each waypoint corresponds to
a node on the topological map. The recorded odometry
trajectory segments are given to our algorithm to see if it
can recover the route.

This setup allows us to evaluate our algorithm on re-
peatable, real odometry sensor data for which we have
the ground truth. It also introduces additional challenges
for our algorithm because the robot’s autonomous behavior
in avoiding obstacles or wall following may violate the
assumptions of direct motion between waypoints. We will
show that our algorithm can still successfully recover all
routes in the presence of such challenges.

A. Recovered Routes

With the given sequence of trajectory segments from the
robot’s odometry, our algorithm returns a set of all recovered
routes. Figure 4 shows a set of routes recovered from the
trajectory segments from Figure 3. Notice that the recovered
routes shown looks remarkably similar except for a select few
highlighted segments, which are all located in an open area
where there were several possible choices. This similarity
means we can be fairly confident that we have correctly
identified most of the actual route. If the algorithm would
have found routes with completely different start and end
positions, then it would be more difficult to be confident
about choosing a particular route. These types of conclusions
are made possible only because our algorithm is able to
provide us with the set of all candidate routes for the
particular trajectory and map. Such conclusions would not



Fig. 4. Set of recovered routes that agree on the beginning and end of
the route but differ in the open area (top). Corresponding snapping errors
(bottom) helps to suggests best route among candidates.

be possible with other approaches including particle filters
that must work with a much larger search space.

B. Route Errors

With the recovered routes from our algorithm, we want
to be able to identify the actual route traversed. Luckily,
our algorithm is also aware of the errors required to snap
the trajectory for each recovered route. We can create a
ranking metric to compare the routes based on these errors.
Figure 4 show errors for each snapping decision from each
recovered route. In general, we would expect that the actual
route would require the most conservative noise model. A
visual inspection of the choices in Figure 4 would correctly
identify the route on the right as the best candidate for the
actual route. Snapping errors uncovered by our algorithm
will be essential in helping us to distinguish and rank the
recovered routes.

C. Optimal Routes

The robot was directed to follow the sequence of way-
points specified by the actual routes shown in Figure 5. Each
route was repeated for five iterations to evaluate repeatability
of our algorithm. Without any corrections, the recorded
trajectory segments result in fairly poor routes with many
being completely outside the map. Drift errors for the routes
differ depending on a combination of difficulty and length
of the route, directions of turns, and other autonomous
behaviors.

Each route was repeated for five iterations. The algorithm
was given a very permissive noise model of (eM, eR) =
(65%, .8radians). From the set of recovered routes, we
rank them based on a simple sum of squared distance on
the maximum snapping error of each route

√
eM2 + eR2.

Figure 6 shows the ranking of the actual route to the total
number of recovered routes. In most cases, the actual route
has the highest rank. As shown in Figure 4, while the

Iter Route
1 2 3 4 5

1 2 (6) 3 (6) 1 (24) 1 (9) 1 (96)
2 1 (6) 3 (6) 2 (24) 1 (18) 1 (96)
3 1 (6) 3 (6) 1 (24) 1 (9) 1 (96)
4 1 (6) 3 (6) 1 (24) 1 (18) 1 (96)
5 1 (6) 3 (6) 2 (24) 4 (18) 1 (96)

Fig. 6. Ranking of the recovered actual route to the total number of routes.
Ranking is computed with a sum of squared difference of snapping errors.

Iter Route
1 2 3 4 5

1 6 (644) 1 (96) 17 (480) 7 (27) 17 (5184)
2 1 (12) 1 (96) 17 (480) 3 (54) 17 (5184)
3 6 (760) 1 (96) 17 (480) 7 (2880) 217 (5184)
4 7 (760) 1 (96) 21 (576) 15 (5307) 97 (5184)
5 5 (638) 1 (48) 17 (480) 19 (5067) 95 (5184)

Fig. 7. Ranking of the recovered actual route to the total number of routes
with introduced topological map errors highlighted in Figure 1.

number of alternative routes appears large, many of them
are small variations of the overall actual route. Nevertheless,
the success of our simple ranking algorithm affirms the
observation that the actual route will typically have the most
conservative snapping error bounds.

D. Topological Map Errors

To evaluate if our algorithm can address topological map
errors, we removed the bridge highlighted in Figure 1, which
is essential for all of the routes. Without this bridge, our
original algorithm failed to identify any routes because it
could not proceed once it reached the bridge. We performed
the search again by expanded the search to allow for two
map errors. The extended algorithm was able to recover a
set of routes that includes the actual route. Unfortunately,
the increased search space results in a significantly increased
number of route candidates even though most are minor
variations for traversing open areas. Although not as reliable
as before, we see that the simple ranking function tends to
place the actual route in the top 5% of potential candidates.

VI. CONCLUSION AND FUTURE WORK

Given trajectory segments from odometry, we have shown
that our algorithm can successfully find the entire set of
candidate routes even in the presence of topological map
errors. We are most interested in recovering the actual route
and we have shown that a simple ranking function can help
to differentiate the routes. Opportunities remain to explore
more robust ranking functions, better compress the routes
generated to eliminate minor route variations, and reduce the
exponential growth of routes in the presence of map errors.
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