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Abstract— Most wireless solutions today are centered around
people-centric devices like laptops and cell phones that are
insufficient for mobile robots. The key difference is that
people-centric devices use wireless connectivity in bursts under
primarily stationary settings while mobile robots continuously
transmit data even while moving. When mobile robots use
existing wireless solutions, it results in intolerable and seemingly
random interruptions in wireless connectivity when moving [1].
These wireless issues stem from suboptimal switching across
wireless infrastructure access points (APs), also called AP hand-
offs. These poor handoff decisions are due to stateless handoff
algorithms that make wireless decisions solely from immediate
and noisy scans of surrounding wireless conditions. In this
paper, we propose to overcome these motion-based wireless
connectivity issues for autonomous robots using highly informed
handoff algorithms that combine fine-grain wireless maps with
accurate robot localization. Our results show significant wireless
performance improvements for continuously moving robots in
real environments without any modifications to the wireless
infrastructure.

I. INTRODUCTION

Mobile robots experience wireless connectivity issues that
are foreign to most us due to their more strenuous wireless
needs. For example, people browsing the web usually only
require bursty and small transmissions of wireless data.
Video conferencing is one of the more strenuous people-
centric applications that requires sustained high throughput
and low latency wireless connectivity but is typically used in
primarily stationary settings. Mobile robots supporting fea-
tures like telepresence have the same wireless requirements
while also moving across the environment. The addition of
motion presents significant wireless challenges since wire-
less devices needs to continuously switch between wireless
infrastructure access points (APs). Unfortunately, poor AP
handoff decisions are likely to produce lengthy interruptions
in wireless connectivity when moving.

Many valuable features of mobile robots depend on un-
interrupted wireless connectivity. For example, telepresence
robots rely on remote human operators for navigation [1].
Intermittent wireless connectivity not only results in a poor
telepresence experience but also an unresponsive robot.
Semi-autonomous robots that can navigate on their own use
wireless transmissions to dynamically schedule and modify
tasks to perform. Wireless connectivity also helps to over-
come on-board limitations by using the network to overcome
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perceptual, cognitive, and actuation limitations [2]. As a
result, it is very important for mobile robots to have reliable
network connectivity.

Existing AP handoff algorithms are designed to operate
ubiquitously in any environment for any device so they
employ general techniques that depend on reactive scans
of the wireless environment whenever connectivity becomes
poor. Not only are scans noisy, they take several seconds
by which time the snapshots may no longer apply for a
moving robot. This can lead to a sequence of suboptimal
handoff decisions that cause significant intermittent wireless
connectivity issues.

In this paper, we aim to show that motion-based wireless
challenges are not some inherent failure of wireless technolo-
gies or poor wireless network management and that they can
be addressed with highly informed AP handoff algorithms.
Our approach is targeted specifically for devices like au-
tonomous robots that are capable of continuously localizing
with high accuracy. We provide our handoff algorithm with
fine-grain wireless maps that are continuously combined with
the robot’s location in order to make intelligent handoff
decisions. Our results show substantial improvements in
wireless performance over existing scan-based algorithms
while the robot is in continuous motion at several speeds.

II. CHALLENGES OF WIRELESS HANDOFFS

Enterprise wireless networks are typically composed of
wireless infrastructure access points (APs) carefully spread
throughout the environment to ensure full coverage. Scan-
based handoff algorithms today gain access to wireless Inter-
net connectivity by first scanning for nearby APs that are in
range. During a scan, wireless devices measure the received
signal strength indicator (RSSI), which loosely reflects sig-
nal reception quality. The handoff algorithm identifies the
highest RSSI AP and then associates with it in order to
communicate with other devices in the network. Once RSSI
of the current AP falls below some threshold, the wireless
device disassociates from it and then repeats the scanning
process to select the next AP to associate with. This process
is referred to as an AP handoff.

When moving across a building, a wireless client may
need to perform many AP handoffs. Our building has over
a dozen APs per floor. A wireless client moving from one
end to the other typically associates with around five APs
to avoid interruptions in wireless connectivity. Scan-based
handoffs cannot handle motion well because wireless devices
are unable to simultaneously associate with an AP while also
scanning for alternative nearby APs on different channels.



Aggressive Disassociations - disassociate when RSSI
below threshold and then scan for APs
Require: Current state S with RSSI of associated AP

SRSSI. Given a minimum threshold RSSI with AP,
TRSSI.

1: function AGGRESSIVE(S, T )
2: if SRSSI ≤ TRSSI then
3: APs ← APScan()
4: APcurr ← maxRSSI (APs)
5: Connect(APcurr)

Location-Based AP Selection - aggressively disassoci-
ate and then select AP by location

Require: Current state S with RSSI of associated AP
SRSSI and device’s location SLOC. Given a min-
imum threshold RSSI with AP, TRSSI. Previously
collected wireless map MWiFi

1: function INFORMED(S, T,M )
2: if SRSSI ≤ TRSSI then
3: APs ← APsAtLocation(SLOC ,MWiFi)
4: APcurr ← maxRSSI (APs)
5: Connect(APcurr)

Highest RSSI AP Policy - associate with the highest
RSSI AP for every location using known wireless map

Require: Current state S with device’s location SLOC

and current AP SAP. Previously collected wireless
map MWiFi.

1: function RADIO(S,M )
2: APs ← APsAtLocation(SLOC ,MWiFi)
3: APcurr ← maxRSSI (APs)
4: if SAP 6= APcurr then
5: Connect(APcurr)

Look-Ahead Plan - Follow a precomputed a sequence
of AP transitions along a known path.

Require: Current state S with device’s location SLOC.
Given a precomputed queue QLOC,AP of AP as-
signments for each location along device’s given
planned path from Algorithm 1.

1: function LOOKAHEAD(S,Q)
2: if isAtLocation(QLOC , SLOC) then
3: APcurr ← QAP

4: Connect(APcurr)
5: Q ← Q.next()

Fig. 1: Pseudocode of the four proposed handoff algorithms

In the interest of maintaining wireless connectivity, scan-
based handoffs often choose to remain associated whenever
possible. Despite these limitations, scan-based efforts have
been sufficient for stationary wireless usage that do not move.

Unfortunately, significant wireless challenges arise when
these scan-based handoffs must contend with devices in
continuous motion:

1) Scans incur a 3 to 5 second time cost that become sig-
nificant with the increased frequency of AP handoffs.

2) Scan-based efforts often disassociate when the current
AP becomes weak with no idea if there had been other
better alternative APs available for quite some time.

3) Scans are noisy and may no longer reflect current
wireless conditions.

As a result, scan-based efforts often result in suboptimal
handoff decisions that significantly degrade wireless perfor-
mance for moving devices.

Better AP handoffs require improved timing of disassocia-
tions and more intelligent selection of APs to associate with.
Late disassociations when the device is already out of range
results in periods of no connectivity. Excessively frequent
disassociations cause many interruptions in connectivity due
to the overheads of switching APs [3]. Intelligent AP selec-
tion is equally important because associating with APs that
are no longer in range will require additional handoffs.

The purpose of this paper is to investigate the impact of

Fig. 2: Emerging autonomous robots that perform tasks in
the environment.

handoff algorithms that are fully aware of actual wireless
conditions and device location. This has only recently be-
come possible due to the emergence of autonomous robots
like the one shown in Figure 2 that continuously localize with
high accuracy [4], [5]. Their ability to continuously localize
also makes them ideal tools for collecting fine-grain wireless



Algorithm 1 Pre-compute an AP plan - Use known path
and WiFi map to precompute a sequence of AP transitions
to minimize AP handoffs and maximize RSSI.
Require: Device’s path as sequence of locations to visit

PLOC . Previously collected wireless map MWiFi. Given
a minimum threshold RSSI with AP, TRSSI

1: function ASSIGNAPS(P,M )
2: for i=0;i<PLOC.length;i++ do
3: PAPs[i]← getAPsAtLoc(PLOC [i],MWiFi, TRSSI )
4:
5: Nopen ← {};
6: for AP in PAPs[0] do
7: Nopen.push({0, AP, [(0, AP )]})
8:
9: Ndone ← {};

10: while !Ndone.isEmpty() do
11: Nnext ← {}
12: while !Nopen.isEmpty() do
13: curr ← Nopen.pop()
14: for i=currLOC ; i < P.length;i++ do
15: for AP in PAPs[i] do
16: if AP == currAP then
17: continue;

18: next ←
19: {i, AP, currPLAN + (i, AP )}
20: if i == P.length− 1 then
21: Ndone.push(next)
22: else
23: Nnext.push(next)
24: if !(currAP in PAPs[i]) then
25: break;

26: Ncurr ← Nnext

27: APPlan ← GetMaxRSSIP lan(Ndone)
28: return APPlan

maps of the environment that will be used by our approach.

III. WIRELESS MAP-BASED AP HANDOFFS

Our proposed informed AP handoff algorithms take advan-
tage of highly accurate wireless maps and continuous robot
localization. We consider a set of wireless handoff algorithms
that are iterations of one another. This will allow us to see
what pieces are most effective at addressing motion-based
wireless connectivity challenges. The four algorithms in or-
der of increasing complexity are: aggressive disassociation,
location-based AP selection, highest RSSI AP policy, and
look-ahead planning. A comparison of their pseudocode
is shown in Figure 1 and we explain each in further detail
below.

a) Aggressive Disassociation: As shown in Figure 1,
this mimics the default, scan-based handoff algorithm that
disassociates when RSSI of the current AP falls below some
threshold. Given strong AP coverage across our environment,
we use an aggressive RSSI threshold TRSSI of -70 dBm.

b) Location-Based AP Selection: Instead of scanning
for surrounding APs, this algorithm queries the given wire-
less map for the best available AP at the device’s current
location. By using a wireless map, this approach removes
the uncertainty of scans by providing the device with the
actual highest RSSI AP at its current location. We will be
able to see how much of an impact optimal AP selection has
on wireless performance.

c) Highest RSSI AP Policy: A device that is continu-
ously aware of its location and has access to accurate wireless
maps does not need to rely on any wireless measurements.
Instead, it could simply always associate with the highest
RSSI AP at all times by using its location as reflected in
the pseudocode. This avoids the need to specify a threshold
for disassociation and ensure the device is always associated
with the highest RSSI AP. An example wireless map showing
the highest RSSI AP across our environment is shown in
Figure 3a. This approach will highlight the importance of
high RSSI on wireless performance.

d) Look-Ahead Planning: Finally, we consider a hand-
off planning algorithm with full awareness about the device’s
location, wireless map, and planned future movements. This
approach is unique for autonomous robots because few other
devices plan their movement in advance. This provides an
opportunity to pre-compute a plan that minimizes the total
number of handoffs while also timing AP switches to occur
at opportune times. As an example, the pre-computed AP
assignment plan used in our evaluation is shown in Figure 3b.
The pseudocode shows that executing this pre-computed
plan simply requires the device to switch APs as it reaches
waypoints where AP handoffs should occur. The challenge
is pre-computing this AP handoff plan.

Details of pre-computing this AP handoff plan are re-
flected in Algorithm 1. The function AssignAPs is given
the robot’s future path and the wireless map. The path is rep-
resented as a sequence locations. Using the wireless map, we
first compute the set of APs that exceed a minimum threshold
RSSI, TRSSI , for each location along the specified path.
Next, we perform an iterative deepening depth-first search
to find the set of nodes requiring a minimum number of
AP handoffs that ensures connectivity along the entire path.
Each node in our search tree is a tuple {LOC,AP, PLAN}.
PLAN is a sequence of waypoint and AP assignment pairs.
Included for clarity are LOC and AP that indicate the last
waypoint and AP assignment pair considered by the node.
Each iteration i of the search generates the set of all possible
i AP transitions from the initial waypoint. Nodes that assign
the same AP to a longer sequence of waypoints will naturally
be closer to finding a PLAN that assigns APs to the entire
path.

The search begins by initializing a set of nodes that
consider the device associating with all possible APs at the
starting position {0, AP, [(0, AP )]}. For each iteration of the
search, each node in the set Ncurr will either be placed in
Ndone or Nnext. Nodes that assign APs along the entire path
will be placed in Ndone. All other nodes are placed in Nnext

and represent incomplete AP assignments that include all



(a) Best APs per Region (b) Min Handoff Plan

Fig. 3: Colors are used to uniquely identify each access point.
The highest median RSSI APs per grid in our environment
(left). Sequence of APs to connect to as computed by the
pre-computed handoff plan that minimizes handoffs while
maintaining a minimum RSSI of -70 dBm across the entire
path (right).

Aggr
Diss

Loc AP
Select

RSSI
Policy

Look
Ahead

Mean RSSI -61.8 -59.4 -53.1 -55.3

Med RSSI -61.0 -59.0 -53.0 -55

Mean Tput 29.13 41.47 43.60 45.44

Med Tput 33.00 46.00 46.53 48.51

# APs 6 4 8 5

Gap Time 35.50 10.62 18.30 10.26

TABLE I: Summary of aggregate measurements across four
handoff algorithms. RSSI (dBms), throughput (Mbps), # AP
switches, and gap time (s) without connectivity are shown.

possible ways in which the current node curr can result in an
additional AP transition next. Since an AP may be available
for a lengthy sequence of path indexes, some nodes will be
further in assigning APs for the entire path. This is why each
node keeps track of its own last waypoint reached LOC and
last associated AP .

Since our search considers switching APs at every way-
point location, we know that all possible combinations of
AP switches that minimize the number of handoffs will end
up in the set Ndone. By selecting the plan that maximizes
total RSSI across the entire plan, we will have a plan that
minimizes the number of handoffs while optimally timing
the handoffs so RSSI for both APs are strong at transition
points.

IV. EVALUATION

We show how wireless performance is affected by these
different informed handoff algorithms. We first look at fine-
grain variations in wireless performance to reveal differences
across the different handoff algorithms. We then perform

a thorough comparison of scan-based versus location-based
handoffs at three different speeds over a total of 3.6 kilome-
ters.

For our experiments, we use the omni-directional wheeled
autonomous robot shown in Figure 2 that is equipped with a
802.11n WiFi dongle with a RT3575 chipset. During normal
operation, the robot moves at speeds of up to .75 m/s.
Prior to these experiments, the robot was driven around the
environment while the dongle was set to monitor mode in
order to capture RSSI of wireless signals transmitted by
surrounding APs. The wireless measurements were bucketed
by location into 1m x 1m grids. The wireless map used in
our work reflects the median RSSI of each AP observed in
each grid.

A. Fine-Grain Wireless Performance

To show wireless performance differences across these
handoff algorithms, we subject the wireless device to iden-
tical traversals of a complex path that requires the device
to make many challenging AP handoffs. The path is shown
in Figure 4 with starting location (S) and end location (E)
marked. The numbers indicate the order that intermediate
waypoints are visited. The device traverses each location at
most once to make it easier to inspect performance variations
with wireless maps.

Overall performance for one iteration is summarized in
Table I. We see that location-based AP selection actually
minimizes the number of AP handoffs, highest RSSI policy
ensures highest median RSSI, and look-ahead planning
achieves highest median throughput. Unsurprisingly, all three
of our location-based handoffs clearly dominate the scan-
based efforts.

Figure 4 shows more fine-grain details about variations
in wireless performance. On top, we see a map showing
RSSI while associated and successfully transmitting data to
show where loss of connectivity occurs. The highest RSSI
AP policy and look-ahead planning are most successful at
ensuring consistently high RSSI across the entire path.

We also show variations over time for both RSSI (middle)
and throughput (bottom). The labeled numbers correspond
to the location waypoints on top. Notice that RSSI tends
to dip suddenly during a handoff. The best performing
algorithms immediately switch to another AP with higher
RSSI. In contrast, notice that aggressive disassociations
experiences two lengthy periods without connectivity that
we see corresponds to RSSI lingering at levels of low RSSI.
This is a result of poor AP selection from noisy scans.

These detailed measurements show why location-based
handoffs are able to overcome systemic problems with scan-
based efforts. We also see further opportunities for opti-
mizing handoffs. For example, throughput in some cases
is higher despite lower RSSI, suggesting other factors like
congestion or interference may play a role. In addition, we
can see for location-based AP selection how less frequent
handoffs sometimes results in less jittery throughput so the
duration of handoffs may be an important consideration in
the future.



(a) Aggr. Disassociation (b) Loc-Based AP Selection (c) Highest RSSI Policy (d) Look-Ahead Planning

Fig. 4: Evaluation of AP handoff algorithms when subjected to the exact same motion path. RSSI of the associated AP at
each location is shown in the spatial maps (top). The corresponding time-varying RSSI (middle) and throughput (bottom)
with time marked when each intermediate path point was crossed. RSSI of -70 dBm is marked with a gray line as a reference
(middle).

B. Aggregate Wireless Performance

We perform a robust comparison of scan-based and
location-based handoff algorithms under continuous motion
at several different speeds. In particular, we compare aggres-
sive disassocations against highest RSSI policy. We select a
150 meter path and perform four iterations of each speed and
handoff algorithm combination for a total of 3.6 kilometers.

Figure 5 shows a CDF reflecting the proportion of points
along the path above some throughput. The path was divided
every 2 meters and then we computed the average throughput
for each 2 meter segment. The CDF shows the cumulative
throughput for each of these segments. Notice the scan-
based efforts do not have wireless connectivity for significant
proportions of the path due to a combination of 3-5 second
overheads for scans and increasingly frequent handoffs due to
poor AP selection. Even when moving at the slowest speed,
scan-based efforts are without connectivity for 10% of the
path, which is intolerable for applications like telepresence.
Wireless performance improves as the device moves more
slowly because scans are more reflective of actual wireless
conditions.

Notice how location-based handoffs at any speed almost
always have wireless connectivity along the entire path. This

shows that many of the interruptions in connectivity for
scan-based handoffs are not from switching APs but more
from scans. As we can see, eliminating scans entirely and
more intelligently selecting APs to switch to can significantly
improve wireless performance. As a result, location-based
handoffs are well-suited for ensuring reliable wireless con-
nectivity while moving.

V. RELATED WORK

Many works have explored the collection of wireless maps.
Initial efforts required exhaustive human effort to manually
mark their locations while capturing wireless signals [6]. Lo-
cation accuracy and timeliness can be improved by deploying
grids of dedicated sensor hardware [7], [8], [9]. Attempts to
decrease the human effort automate location estimates by
using a combination of odometry, magnetometer, and WiFi
found in cell phones with an accuracy of 1.69 m [10], [11].
Some efforts have used robots to predictably collect wireless
signals [12], [13] but still require human assistance due to
lack of autonomous navigation. Our work uses autonomous
robots to collect fine-grain wireless maps without any mod-
ification to the environment or tedious human effort.

Research to understand connectivity issues has typically
been from the infrastructure point-of-view as it is much easier



Fig. 5: Comparison of wireless performance for scan-based
and location-based handoffs while continuously moving at
three different speeds. CDF showing the % of measured
segments along the evaluation path above some throughput.
Notice that scan-based handoffs when moving at .37 m/s had
no connectivity for 10% of the path.

to collect and aggregate measurements at APs rather than
wireless clients. A global view of wireless signals observed
across infrastructure APs can be used to infer aggregate
performance metrics like number of active wireless clients,
interference, loss rates, and utilization [7], [8] and even
infer missing packets [9]. These approaches are only able to
account for received wireless signals. This does not include
failed transmissions that are not overhead or events that lead
to particular wireless client handoff decisions, and thus are
orthogonal to our work.

Prior work has proposed techniques to better predict and
reduce the impact of handoffs as well as giving application
the opportunity to prefetch data [14]. Nearby access points
that happen to overhear wireless data despite not being the
target AP have been used to opportunistically mitigate the
effects of WiFi handoffs for vehicles moving across multiple
buildings [15]. Efforts for faster handoffs have looked at
reducing retry timeouts for vehicles [16] and synchronizing
broadcast of beacon frames by modifying APs [3]. There are
also orthogonal efforts to reduce the interruption associated
with handoffs when they do occur [17]. More intelligent
AP selection has been considered by using less accurate
GPS location estimates [18] . Our work focuses on indoor
environments and does not require other wireless devices or
APs to adopt new wireless protocols.

VI. CONCLUSION

Mobile robots in continuous motion face significant wire-
less connectivity challenges. Current scan-based handoff
algorithms are insufficient for meeting the strenuous connec-
tivity demands for supporting features like telepresence for
mobile robots. We have shown how wireless map-based AP
handoffs can substantially improve the reliability of wireless
connectivity for autonomous robots. In fact, these highly
informed AP handoffs eliminate many of the interruptions
in connectivity due to motion. While we did not observe
significant changes in the wireless map across a few days,

future work is needed to investigate how one can maintain
up-to-date wireless maps in dynamic environments. Future
work is also needed to apply these same highly informed
handoff algorithms to other mobile devices like cell phones
that have much less accurate localization.
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