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Abstract. An increasing number of mobile devices are capable of auto-
matically sensing and recording rich information about the surrounding
environment. Spatial locations of such data can help to better learn about
the environment. In this work, we address the problem of identifying the
locations visited by a mobile device as it moves within an indoor en-
vironment. We focus on devices equipped with odometry sensors that
capture changes in motion. Odometry suffers from cumulative errors of
dead reckoning but it captures the relative shape of the traversed path
well. Our approach will correct such errors by matching the shape of
the trajectory from odometry to traversable paths of a known map. Our
algorithm is inspired by prior vehicular GPS map matching techniques
that snap global GPS measurements to known roads. We similarly wish
to snap the trajectory from odometry to known hallways. Several mod-
ifications are required to ensure these techniques are robust when given
relative measurements from odometry. If we assume an office-like envi-
ronment with only straight hallways, then a significant rotation indicates
a transition to another hallway. As a result, we partition the trajectory
into line segments based on significant turns. Each trajectory segment
is snapped to a corresponding hallway that best maintains the shape
of the original trajectory. These snapping decisions are made based on
the similarity of the two curves as well as the rotation to transition be-
tween hallways. We will show robustness under different types of noise
in complex environments and the ability to propose coarse sensor noise
errors.

1 INTRODUCTION

Sensor-equipped mobile devices can sense and record information about their
surrounding environments. Mobile devices are presented with incredible oppor-
tunities to collect data where static devices cannot. For example, a stationary
thermometer is rather uninteresting because it only measures temperature at a
single location. In contrast, a mobile device equipped with a thermostat could
create a temperature map to reveal patterns and perhaps even identify drafty
windows. Interesting spatial maps could be created from many other sensors in-
cluding UV, air quality, radiation, and Wifi. Devices that move can help reveal



rich information about our surrounding environments. One can create these spa-
tial maps if the spatial locations for each corresponding sensor measurement are
known. If we knew the path traversed by the device, then we can estimate such
spatial locations. In this work, we will address the offline problem of estimating
the path traversed by a device in an indoor environment from odometry and a
known map.

There exist many techniques to identify the path traversed from advanced
sensors like Kinect, LIDAR, Sonar and GPS. However, these sensors are typically
limited to a subset of mobile devices like cars and robots. In addition, extrinsic
sensors are challenged by scenarios in which there are varying light conditions
and dynamic objects and GPS is challenged by indoor environments. Odome-
try is advantageous because it captures high-resolution changes in motion while
also being low cost, occupying a small form factor, and consuming little power.
This makes it accessible to a large number of very mobile devices including pe-
dometers, health monitors, cell phones, and blind robots. Odometry faces unique
challenges because its measurements are relative. While each measurement alone
is a relatively insignificant change in motion, aggregating a lengthy sequence of
odometry measurements can reveal a unique shape traversed by the device. In
contrast, a single GPS measurement can reveal the global position of the device.

The process of computing the path traversed by odometry is called dead
reckoning. Errors in odometry accumulate and typically result in wildly incor-
rect position estimates. While not ideal for computing the exact path traversed,
odometry is very good at capturing the relative shape of the path traversed.
Figure 1 is an example of odometry collected from wheel encoders of an omni-
directional robot. Most of the cumulative errors are a result of drift errors that
occurred when the robot turned at intersections. With the map, it becomes ob-
vious that the path from odometry does not travel on any traversable paths. Our
approach will use the given map in order to correct these significant cumulative
errors by matching the shape of the trajectory to traversable paths.

We address offline path identification because the position at a particular
point is unclear until one considers the subsequent trajectory that follows. For
example, one cannot disambiguate two right turns in the same hallway until
the subsequent trajectory reveals a shape that is unique to only one of the two
choices. To utilize the shape of the trajectory, we borrow techniques from ve-
hicular GPS map matching. GPS does not consider the infinite space of exact
positions of the vehicle on a road. Its primary concern is to match the vehicle to
the correct road segment. GPS measurements are snapped to roads by using one
of several geometric map matching techniques. Most relevant to our approach
is curve-to-curve matching because it computes the distance between an entire
sequence of GPS measurements to that of an entire road segment. One can add
topological map matching to exploit the connectivity constraints when transi-
tioning between different road segments. Instead of considering all nearby roads
for snapping, topological map matching only snaps to road segments connected
to the road that the vehicle is currently matched to. The combination of these
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Fig. 1. Wheel encoder odometry (red) collected from a particular traversal of an in-
door environment compared to ground truth collected by localization with a Kinect
(green). The (a) changes in forward motion are (c¢) accumulated over time to reveal
that the device has traveled over 200 m. The (b) changes in rotation are accumulated
to reflect its (d) cumulative heading. At the end of the path, the distance traveled
deviated from ground truth by only 6 m while there is much more significant drift in
the device’s heading. This is (e) visualized by comparing the actual truth path to the
path constructed from dead reckoning.

techniques leads to very robust navigation algorithms for GPS [7] in real world
scenarios.

Our approach has many parallels to these GPS map matching algorithms.
Instead of snapping to roads, we will be snapping to hallways. In this work, we
will assume indoor, office-like environments with straight hallways. To evaluate
how well a trajectory segment matches a hallway segment, we perform curve-
to-curve matching by computing their similarity instead of distance. Distance is
ideal for GPS because better matching roads will be closer to the global position
measurements. A similarity metric is better suited for comparing the relative
shapes of two curves, which is the case with odometry. We use topological map
matching to both enforce connectivity between hallways and also to compare
the change in heading required for the device to transition to another hallway.
A good candidate hallway will require a change in heading that matches very
well to the change in rotation measured by odometry. The combination of these
two relative metrics makes our approach more robust in identifying paths that
better match the shape of the trajectory from odometry.

We will discuss related work in Section 2, introduce relevant definitions in
Section 3, formalize our snapping algorithm in Section 4, and evaluate our algo-
rithm in Section 5.



2 RELATED WORK

Prior works have attempted to improve odometry with careful calibration [1] [4].
While one can localize over short distances [2], odometry will eventually succumb
to dead reckoning errors and require corrections to fix these cumulative errors.

Correcting dead reckoning errors has been addressed in prior work with cell
phones by using walls of a known map [5] [9] [12] [8]. Particle filters were used
to sample the space of reachable paths. Odometry measurements were used to
update the motion of the particles. Uncertainty is added to these motion updates
because odometry is noisy. The walls of a known map help to constrain uncer-
tainty of the particles because the device should not be able to pass through a
wall. The problem addressed is similar to our work but our approach does not
attempt to recover the exact positions traversed. As a result, we can focus on
high level decisions at hallway intersections to ensure more robust global paths
identified and not require being given an accurate sensor model.

Other work attempts to automatically collect unique signatures in an envi-
ronment from various sensors. These signatures include Wifi [3] [6] as well as a
combination of different sensors including magnetic signatures [10]. Odometry
is unique because it can capture high-resolution changes in motion with a level
of detail that unique signatures cannot capture. There are opportunities in the
future to complement position estimates from these unique signatures with the
motion trajectory from odometry.

Our algorithm borrows many techniques from GPS map matching [7] [11].
We focus on taking advantage of basic geometric and topological map match-
ing techniques because odometry excels at capturing the relative shape of the
traversed path. While distance metrics are ideal for global GPS measurements,
some modifications are required so that these map matching techniques are ro-
bust for relative sensors. Our approach focuses on the shape of the trajectory by
measuring similarity to make better snapping decisions for odometry.

3 DEFINITIONS

We consider two dimensional path identification in a Cartesian map. Odometry
sensor data is assumed to be captured on the same plane. We consider devices
traveling directly towards their destination. We require a few definitions:
Odometry update u is composed of a change in forward motion and rotation
since the last update. A trajectory T is a sequence of odometry updates. A pose
p is a position and direction on the given map. A path P is a sequence of poses.

u={dm,dr}
T = {Ul,UQ, us, }
p={zy,a}

P= {plap2ap37 }

Computing the path of a trajectory, also called dead reckoning, can be computed



recursively given an initial pose pg. A pose p; is computed from the pose of the
previous step p;—1 and odometry update u;.

DeadReckoning(p;—1,u;) = p; :

pe=ud" +pd
p! =p!_| + sin(p§) « uf™

PE =Dl + cos(pt) + ul™

Odometry updates arriving at approximately 20 Hz tend to be very small
changes in motion. As a result, we will aggregate sequences of odometry up-
dates to form trajectory segments. We consider environments with only straight
hallways. Trajectory segments can then be partitioned by identifying significant
rotations. A trajectory segment approximates a sequence of odometry updates
as a single, large change in motion dM and rotation dR. This will result in a
straight trajectory segment that ignores the minor rotations of the aggregated
odometry updates. A trajectory T is now a sequence of trajectory segments s.
The dead reckoning computation remains the same except the updates are now
over these more significant trajectory segments s.

s = {ui,ui+1,ui+2, } ~ {dM, dR}
T = {81, S92, 83, }

DeadReckoning(pi_1,8;) = pi :
pi = st 4 pt

Pl =p!_y + sin(p}) * siM
dM

P = pi_y + cos(pf) * s

4 SNAPPING

Our algorithm snaps trajectory segments to their corresponding hallways. We
will segment the trajectory so that each trajectory segment corresponds to an
entire hallway segment. If we assume an environment with only straight hallways,
then the trajectory segment should be partitioned into straight segments. We
will first explain how the hallways and trajectories are segmented, then how
these are processed by the snapping algorithm, and then the relative metrics to
best use trajectories from odometry.

4.1 MARKING HALLWAY SEGMENTS

Our assumption of straight hallway means that we do not need to consider curved
hallways. Examples of the types of indoor environments that we consider are
shown in Figure 2. If hallway intersection points are known, then hallways can be
identified by connecting all hallway intersection points that do not violate a map



constraint. Automatic identification of intersection points is difficult because
they need to be carefully placed to have high visibility with surrounding adjacent
hallways. This is a challenge especially for open areas. As a result, we manually
mark the hallway intersection points as a one-time process for a given map.
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Fig. 2. Indoor environments following our assumption of straight hallways marked by
the darker lines.

4.2 EXTRACTING TRAJECTORY SEGMENTS

Odometry sensors capturing measurements at 20 Hz capture very small changes
in motion that individually are quite insignificant. We want to aggregate se-
quences of odometry updates into trajectory segments s = {ui, Uit 1, Uit2, } to
match with hallway segments. Given that the environment is composed of only
straight hallway segments, we can represent each trajectory segment as a large
odometry update s ~ {dM,dR}. Odometry updates are partitioned based on
identification of large turns that should indicate when the device is transitioning
to another hallway.

Significant rotation peaks are identified by applying a sliding window of 30
frames over the changes in rotation from odometry. This will identify the peak
rotations as seen in Figure 1(b) that correspond to significant heading changes
in Figure 1(d). The trajectory will be segmented based on these peak rotations.
dR is assigned the value of the windowed peak rotation. dM is the total change
in motion forward over the sequence of odometry updates occuring since the last
significant peak rotation. We have found that this simple approach is sufficient
for odometry captured by wheel encoders of an omni-directional robot.

4.3 SNAPPING TRAJECTORIES

Our snapping algorithm iteratively snaps each trajectory to the best match-
ing hallway. As shown in Algorithm 1, the device’s poses are recorded at each



hallway intersection and appended to form the hallways intersections traversed.
These poses can then be connected by their corresponding trajectory segments
to form the path traversed. This reflects our algorithm’s focus on making robust,
high-level decisions at hallway intersection points as opposed to attempting to
estimate the exact poses of the device. It also means that our algorithm is ef-
ficient because it does not need to consider modifications to the intermediate
odometry measurements that form the trajectory segment.

We use both geometric and topological map matching from vehicular GPS
algorithms. The function GetAdjacentHalls uses topological map matching by
limiting the candidate hallways for the device to tramsition to. The function
GetBestMatch uses geometric map matching to compute the similarity of the
trajectory update to the candidate hallways. The combination of these two tech-
niques means that our algorithm will prefer identifying paths that have a similar
shape with the noisy trajectory. This is a benefit because odometry is good at
capturing the relative shape of the path traversed.

Algorithm 1 Trajectory Snapping

function TRAJECTORYSNAP(Hallways, TrajSegments, Poselnit)
PoseCurr + Poselnit;
IntersectionsTraversed < [PoseCurrent];

1:
2
3
4
5 for TrajUpdate in TrajSegments do

6: Candidates < GetAdjacentHalls(Hallways, PoseCurr)

T SnappedHallway + GetBestMatch(Candidates,PoseCurr,TrajUpdate)
8 PoseNext < GetNextIntersection(Snapped Hallway,PoseCurr)

9
0
1

IntersectionsTraversed < [IntersectionsTraversed; PoseNext|;
PoseCurr + PoseNext)

4.4 DECIDING BETWEEN CANDIDATE HALLWAYS

Our algorithm should prefer hallway candidates that best follow the relative
shape of the noisy trajectory. Each trajectory segment is a rotation and forward
motion. Applying this trajectory update to the device’s current pose should
move it from the current hallway intersection to the next hallway intersection.
However, there can be many hallways to choose from. We need a metric that will
prefer candidate hallways that best matches the measured trajectory update.
Distance is ideal for GPS because global measurements are closer to roads
that are better candidates. With relative measurements, drift can result in sig-
nificant distances between the best hallway candidate and the trajectory. Our
relative metric considers the current pose of the device and computes the relative
change in motion to transition to each of the candidate hallways. The hallway
that best matches the trajectory update will be chosen for snapping. Currently,



we use a simple similarity function that computes the square root of the sum
of squared differences between the percentage difference in forward motion and
the difference in angular rotation. While future work can better engineer these
error components, it is most important that the relative metric measures these
components separately and then combines them.

As we can see in Figure 3(a), the distance metric would incorrectly snap to
the shorter hallway candidate (0,5). In contrast, the relative metric Figure 3(b)
would recognize that the change in rotation is equivalent for both candidates
but the magnitude of the trajectory matches the longer hallway candidate (0,10)
much better. There are many other situations where distance will making puz-
zling decisions while our relative metric snaps to more intuitive hallways. Be-
cause relative snapping cannot recover once a poor decision is made, improving
robustness is very important for the success of our algorithm.

(a) Distance Metrics (b) Relative Metrics
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Fig. 3. Deciding which candidate hallway (green) to snap the trajectory update (red).
A distance metric would select the shorter hallway because the sum of sampled dis-
tances (dashed) is smaller. The relative metric separates rotation and motion errors
and selects the longer hallway because it only differs from the trajectory update by
rotational error while the shorter hallway differs by both rotational and motion errors.

Algorithm 2 Best Matching Hallway

1: function GETBESTMATCH(Candidates, PoseCurr, TrajUpdate)
2 BestSnapChoice < ()

3 for Hallway in Candidates do

4: hM < ComputeRelativeMotion(Hallway, PoseCurr)

5: hR <+ ComputeRelativeRotation(H allway, PoseCurr)
6: Dif fMotion < TrajUpdate.dM — hM

7 Dif f Rotation < TrajUpdate.dR — hR

8: PercentageDif f Motion < Dif f Motion/hM
9:

10: Similarity < \/PercentageDiffMotion2 + Dif f Rotation?
11: if isMoreSimilar(Similarity, BestSnapChoice) then

12: BestSnapChoice + Hallway




4.5 ESTIMATING COARSE ODOMETRY NOISE

An important property of our algorithm is that it does not require a given
sensor noise model. This is possible because we do not attempt to consider
the infinite space of exact positions traversed by the device. Instead, we only
consider a finite number of hallway segments and force the trajectory to fit to
these hallways. As a result, the relative metrics we use only need to select the best
choice among the finite hallway candidates. This allows our algorithm to compute
the modifications required to snap each trajectory update to its corresponding
hallway. These modifications can be interpreted as the coarse odometry noise
estimates of our algorithm. We can then use these noise estimates to recognize
when a potentially unsuccessful snap has occurred by looking for modifications
that are outliers of normal behavior.

5 RESULTS

We wish to show that our algorithm is robust and operates in real-world scenar-
ios. We will use an extensive simulation in a challenging office environment to
evaluate robustness. We will then show that our algorithm can correct errors in
wheel encoder odometry from an omni-direction robot and successfully proposes
coarse Sensor noise errors.

5.1 Evaluating Robustness

We took the map of a real indoor office environment as shown in Figure 2(b)
and performed simulations to evaluate the robustness of our snapping algorithm.
This environment is especially challenging because there are many similar turns
that our algorithm can incorrectly snap to. In our simulation, we take a single
ground truth path, extract its trajectory segments, and then add random noise
to evaluate our algorithm. Uniform noise is added by taking each trajectory
segment {dM,dR}, stretching the forward motion of the device by a percentage
error ) = uniform(—a, «), and adding rotational noise ¢ = uniform(—_, ).
This results in a noisy trajectory segment {dM (1 + n),dR + €}.

We want to show how the success rate of snapping evolves as more noise
is injected into the simulation. In our simulation, we perform 100 iterations of
each combination of noise. We can see in Figure 4(a-d) the types of paths that
our algorithm can successfully identify the correct path traversed. We can see
that our algorithm can robustly handle fairly significant noise from the gradient
of success rates in Figure 4(e). Our snapping algorithm fails when it makes
an incorrect snapping decision. This results from our algorithm making greedy
decisions from local information and potentially can discard the globally optimal
solution. Instead of maintaining a single guess, we could maintain a set of unique
guesses. Figure 4(f) shows the increased success rate when our algorithm is
augmented with a set of 5 guesses. When incorrect decisions are made, it is more
likely that another guess will have made the correct decision. As we increase the
number of unique guesses, the success rate of our algorithm will increase along
with the size of the explored search space.
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Fig. 4. Testing robustness of our snapping algorithm by injecting noise into a (a)
ground truth path. (b) Motion only noise n = £25%. (c) Rotation only noise ¢ =
+.8rad. (d) Both motion and rotation noise n = £25%, ¢ = +.8rad. (e) Success rate of
snapping injected with various combinations of noise. (f) Improved success when the
iterative algorithm is augmented by maintaning a set of 5 unique guesses.

5.2 Success with Real-World Data

We evaluate odometry from wheel encoders of an omni-directional robot col-
lected from the path traversed in Figure 1 that travels almost 250 m. This
environment is not nearly as challenging as the simulated environment because
it requires fewer difficult decisions. In Figure 5.2, we show how our snapping
algorithm iteratively corrects the error in odometry. Each decision is a simple
comparison between the trajectory segment and its corresponding hallways be-
cause the prior trajectory segments have already been snapped. The noise model
discovered reveals that corrections to the wheel encoder odometry resulted in mo-
tion noise within 20% and rotation noise within .5 radians. These coarse noise
estimates are not as accurate when compared to the ground truth in Figure 1
because they are influenced by the marked positions of the hallway intersections.
Nevertheless, these coarse estimates can help to reveal patterns in the normal
behavior of snapping and outliers could help to suggest when incorrect snapping
decisions are made.

6 CONCLUSION

Our snapping algorithm can recover paths with similar shapes to the trajectories
captured by odometry. Forcing the trajectory to fit the marked hallways allows
us to focus on important decisions at intersections to ensure global robustness.
In addition, it allows us to recover coarse noise estimates from the modifications
required to fit the trajectory to the hallways. Many opportunities remain to
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Fig. 5. Snapshot of several iterations of snapping from trajectory segments extracted
from real wheel encoder odometry. The snapped segments (green) and unsnapped seg-
ments (red). Snapping results in modifications to the trajectory segments and these
can be perceived as coarse noise estimates that are shown at the bottom.



consider curved hallways, combining odometry with other sensors, and recovery
from incorrect snapping decisions.
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